Information Propagation on Permissionless Blockchains
نویسندگان
چکیده
Blockchain technology, as a decentralized and non-hierarchical platform, has the potential to replace centralized systems. Yet, there are several challenges inherent in the blockchain structure. One of the deficiencies of the existing blockchains is a convenient information propagation technique enhancing incentive-compatibility and bandwidth efficiency. The transition from a centralized system into distributed one brings along game theoretical concerns. Especially for the permissionless blockchains, information propagation should be incentive-compatible just like any other communication or computational costly operation. Another important issue is that information is relayed via gossip-like protocols causing excessive bandwidth usage. Each information is propagated at least twice: first to advertise its existence, second to announce that it is final and validated, i.e., added to the block. In this work, we investigate two distinct aspects of the information propagation of the blockchains: incentive and routing mechanisms. For the former part, we analyze the necessary and sufficient conditions of the Sybil-proof incentive-compatible propagation methodology. We show the impossibility result of the Sybil-proofness in 1-connected network model. For the rest, we prove that the propagation decision is independent of the capabilities of the receiving side. Then, we formulate the generic fee sharing function which encourages rational participants to propagate information. Regarding the bandwidth efficiency, we study a special type of consensus protocols where the block owner (round leader) is validated before the block is created. We present a smart routing mechanism which the redundant communication cost from the size of the network to the scale of average shortest path length. Finally, we combine the incentive and routing mechanisms in a storage-efficient way.
منابع مشابه
Blockchain application and outlook in the banking industry
Blockchain technology is a core, underlying technology with promising application prospects in the banking industry. On one hand, the banking industry in China is facing the impact of interest rate liberalization and profit decline caused by the narrowing interest-rate spread. On the other hand, it is also affected by economic transformation, Internet development, and financial innovations. Hen...
متن کاملBlockchains and Databases
In the last few years, blockchain (also known as distributed ledger), the underlying technology of the permissionless or public Bitcoin network, has become very popular for use in private or permissioned environments. Computer companies like IBM and Microsoft, and many key players in different vertical industry segments have recognized the utility of blockchains for securely managing assets (ph...
متن کاملHybrid Consensus: Efficient Consensus in the Permissionless Model
Consensus, or state machine replication is a foundational building block of distributed systems and modern cryptography. Consensus in the classical, permissioned setting has been extensively studied in the 30 years of distributed systems literature. Recent developments in Bitcoin and other decentralized cryptocurrencies popularized a new form of consensus in a “permissionless” setting, where an...
متن کاملThunderella: Blockchains with Optimistic Instant Confirmation
State machine replication, or “consensus”, is a central abstraction for distributed systems where a set of nodes seek to agree on an ever-growing, linearly-ordered log. In this paper, we propose a practical new paradigm called Thunderella for achieving state machine replication by combining a fast, asynchronous path with a (slow) synchronous “fall-back” path (which only gets executed if somethi...
متن کاملA Blockchain Based on Gossip? – a Position Paper
A blockchain is an append-only sequence of blocks of arbitrary data. The two most popular approaches to blockchains are permissionless blockchains based on Proof of Work (PoW) and permissioned blockchains based on Byzantine consensus or Byzantine Fault Tolerance (BFT). The first is based on competitions between anonymous participants solving cryptopuzzles, while the latter is a cooperative appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.07564 شماره
صفحات -
تاریخ انتشار 2017